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Abstract. AtheoreticalstudyoftheSi(ll0)-1 X l,Si(100)-2 X 1, Si(lll)-2 X 1 andSi(ll3)- 
1 x 1 surfaces is presented. We use both the semi-empirical tight-binding bond model 
and the classical potential of Stillinger and Weber to describe interatomic forces. Energy 
minimization calculations are carried out in order to deduce the stable atomic configurations. 
We show that the semi-empirical tight-binding approach can produce results in reasonable 
agreement with other experimental and theoretical work and we demonstrate that charge 
transfer is not an important factor governing the stability of these surfaces. In a comparative 
study, involving not only static energy minimization but also Monte Carlo simulated 
annealing, we show why the classical potential does not perform well in describing surface 
atomic structure. 

1. Introduction 

Scanning tunnelling microscopy (STM) [ l ]  has enabled many details of surface atomic 
and electronic structure to be characterized directly in real space. The experimental 
information which has become available through STM provides a powerful challenge to 
theory to explain why surfaces adopt particular atomic configurations. Semiconductor 
surfaces are especially interesting, not only because of their importance in the devel- 
opment of novel electronic devices, but also from a fundamental point of view because 
of the wide variety of unexpected reconstructions that can occur. We are therefore 
motivated to model the atomic structure of a number of silicon surfaces. 

Broadly there are three main approaches which can be adopted. These are ab initio 
local density functional calculations [ 2 ] ,  semi-empirical calculations in which a formal 
expression for the energy derived from first principles is parameterized [3-81 and empiri- 
cal calculations in which an interaction potential which may contain any number of N -  
body terms is empirically fitted to describe one region of configuration space in the hope 
that it will also be able to model other regions successfully [9]. A large number of 
empirical potentials for silicon has been proposed in recent years [lo-161. The ab initio 
approach has the advantage that it is the most accurate but islimited to systems containing 
a maximum of around one hundred atoms with currently available computing resources 
[17]. At the other extreme empirical potentials sacrifice accuracy for the advantage of 
speed which means that relatively large unit cells can be investigated. With the recent 
exception of Pettifor’s bond order potentials [18,19], we stress that all empirical poten- 
tials for silicon assume functional forms for the potential which are then fitted to 
experimental data such as the cohesive energy and bulk modulus. The theoretical 
arguments for the assumed functional forms are essentially classical in origin with little 
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or no quantum mechanical basis. The arguments are based on distortions of bond length 
and angles from their ideal values and in some cases [12-141 intuitive estimates of how 
these distortions affect bond orders in the density matrix. If an empirical potential could 
be found which produces sensible minimum energy atomic configurations in a static 
calculation then there would be considerable scope for incorporating the potential in a 
simulation such as Monte Carlo (MC) or molecular dynamics in order to explore a 
greater area of configuration space and thereby seek the global minimum which, for an 
extensively reconstructed surface, may not be identified otherwise. The semi-empirical 
approach is a compromise in which the model supposedly still contains the essential 
physics yet the time consuming steps of the ab initio calculation, such as explicitly 
evaluative matrix elements of the Hamiltonian, are avoided by empirical parameteriz- 
ation. 

In this paper we carry out static energy minimization calculations using a semi- 
empirical tight-binding approach called the tight-binding bond (TBB) model [20]. We 
assess the performance of the model by comparing the predictions of surface atomic 
structure with other experimental and theoretical work. Four silicon surfaces are inves- 
tigated: Si(ll0)-1 X 1,  Si(100)-2 X 1, Si(lll)-2 x 1 and Si(113)-1 x 1. 

Charge transfer between atoms in non-equivalent environments at a semiconductor 
surface might be expected because of incomplete screening of the ion cores resulting in 
a redistribution of electronic charge. If such a process does occur, then it is not clear 
what effect it is going to have on the atomic structure of the reconstructed surface. In 
addition, therefore, we address the question of whether such a charge transfer process 
must be considered explicitly in atomistic simulations of silicon surfaces. 

Finally, we present static energy minimization calculations on the same four silicon 
surfaces using the empirical potential of Stillinger and Weber (sw) [ l l ] .  For the Si(100) 
and Si(ll1) surfaces, we have also incorporated the sw potential into a MC simulation of 
annealing. The aim is to show, in a comparative study, why the empirical sw potential 
does not perform well in predicting stable atomic structures for silicon surfaces. 

2. Theoretical approaches 

2 .1 .  The tight-binding bond model 

The TBB model [20], coupled with the self-consistency requirement of local charge 
neutrality (LCN), is the simplest semi-empirical tight-binding scheme for describing the 
energy of a system of atoms which is also consistent with the force theorem [21-231. 
Moreover, it allows properties that depend on second-order charges in the energy, such 
as the elastic constants [20] and the heats of formation of alloys [24] to be calculated 
reliably. The TBB model has been discussed in detail by Sutton et a1 (201. Here we confine 
ourselves to a brief summary of the model and the key differences between the TBB 
model and the more widely used band model (e.g. as used by Chadi [3-61 and Guo-Xin 
and Chadi [7]). 

Starting with the Harris-Foulkes functional [25-261 of density functional theory [27, 
281 it is possible [20] to express the binding energy of a solid in the following physically 
transparent form: 
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The electronic Hamiltonian H is constructed from an input charge density matrix pf. pout 
is the density matrix obtained from the eigenfunctions of H .  Contact is made with tight- 
binding by assuming that a suitable choice of p' is a superposition of atomic charge 
densities. When expanded in an atomic orbital basis, the corresponding density matrix, 
pf, is then diagonal and the off-diagonal contributions to the trace in equation (1) arise 
only from the formation of bonds, as described by pout. The off-diagonal elements 
contributing to the trace sum to the covalent bond energy E,,, while the sum of the 
diagonal elements defines the promotion energy Epro. Equation (1) describes the energy 
change accompanying an impaginary process in which the solid is condensed from 
infinitely separated atoms. The promotion energy describes the sum of energies associ- 
ated with individual atoms when the occupations of the atomic orbitals differ in the solid 
compared with the free atomic state. Note that the site-diagonal Hamiltonian matrix 
elements that appear in the promotion energy are those for the solid, and not those for 
the free atom. AE,,, and AEe, are the changes in the exchange-correlation and total 
electrostatic energies, respectively, as a result of the condensation. They are both 
functionals of the input charge density and may be apppoximated by a sum of pairwise 
interactions [20]. A E,, accounts for the change in the spin-polarization energy associated 
with the condensation process; we assume that this quantity is a constant which does not 
depend on the atomic environment. The error in the binding energy (equation ( l ) ) ,  is 
of the order of (psc - pf) (psc - pout), which psc is the Kohn-Sham self-consistent charge 
density. 

In the TBB model the covalent bond energy and promotion energy are found by 
solving the Hamiltonian l? while the remaining terms in (1) are approximated by a sum 
of empirical pair potentials. Contact is made with the more commonly used band model 
by regrouping the terms in (1) and writing down the total energy as follows: 

Etotal = Ebind + Efreeatoms = Eband - TrpfH + A H e x b f l  + AEesbf] -k AEsp 

The total energy is denoted by E,,,,,, the energy of all the atoms in their free atomic state 
by EfreeaIoms, the ion-ion electrostatic energy by Eii and E,, is the electron-electron 
Coulomb energy. The band energy ,!?band is equal to TrpoUtH. In the band model the total 
energy is represented by the band energy plus a sum of empirical repulsive pair potentials 
representing all the terms in large square brackets in equation (2). 

If either (1) or (2) were solved exactly there would be no distinction between the 
band model and the TBB model apart from an unimportant shift in the energy zero 
equal to Efreeatoms. The differences between these models arise because they are both 
approximations to the energy functions in equations (1) and (2). The empirical pair 
potentials in the two models represent physically different interaction energies. This is 
crucial if we now introduce some form of self-consistency into the electronic Hamil- 
tonian. Properties that depend on second-order changes in the Hamiltonian require an 
explicit treatment of charge transfer effects, i.e. self-consistency. There are several 
simple schemes for introducing self-consistency into tight-binding models, and perhaps 
the simplest is to require LCN. This may be achieved by adjusting on-site Hamiltonian 
matrix elements. Physically, this amounts to assuming that electronic screening alters 
the local electrostatic potential at an atomic site so that the atom remains neutral. 

The force theorem states that at the self-consistent charge distribution there is no 
contribution to the force on an atom arising from the self-consistent redistribution of 
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electronic charge. This is satisfied by the TBB model with LCN but not by the band model. 
it would also be satisfied by the band model if the cancellation between the change in 
the 'electron-electron double counting term' E,, and the change in the site-diagonal 
contributions to the band energy were made explicitly. But this cancellation does not 
take place in the band model because E,, is contained within the empirically fitted pair 
potential. By contrast, in the TBB model, the cancellation is made explicitly and there is 
no contribution to the force arising from the site-diagonal Hamiltonian matrix elements. 
Provided all atoms are locally charge neutral, the force on atom k in the x direction is 
given in the TBB model by 

where u(r)  is the pair potential, r j k  is the length of the bond from atom k to aneighbouring 
atom j, and CY and p denote orbital symmetries. Note that there are no site-diagonal 
contributions to the force in this expression, as required by the force theorem. LCN on 
atom i is achieved in the TBB model by varying all the Hamiltonian matrix elements Hiaim 
by the same amount Ai.  This assumption preserves the s-p splitting energy. 

We point out that the covalent bond energy may be expressed in terms of the local 
density of states (LDOS), ni,(E), as follows: 

ia j/3 in J 

i # j  

If i = j is included in the double sum in equation (4) we obtain instead the band energy. 
The integrand on the right-hand side then becomes Eni,(E). The intersite method (ISM) 
refers to calculations using the off-diagonal representation, while the site-diagonal 
method (SDM) uses only diagonal matrix elements. The equalities in equation (4) are 
exact provided the density matrix elements and local densities of states are exact. Thus, 
a comparison of the energies computed by the ISM and SDM provides a useful check on 
the calculation. 

2.1.1. Parameterization ofthe model. The TBB model provides formal prescriptions for 
the force and energy in an assembly of atoms in terms of a localized atomic orbital basis. 
Nowhere are the matrix element integrals explicitly evaluated. Instead, an empirical 
parameterization of the model is carried out which is dependent on the system under 
investigation. The Hamiltonian matrix elements used in this study of silicon surfaces are 
the same as those used by Chadi [6] and Guo-Xin and Chadi [7], who obtained the 
empirical parameters by fitting the matrix elements to bulk properties of the silicon 
crystal for an sp3 minimal basis set. Within the two-centre approximation, the length 
scaling of the off-diagonal Hamiltonian matrix elements is taken to be l/(distance)* 
following Harrison [29]. This scaling law is truncated at a cut-off of 0.5 or 0.55 lattice 
parameters (LP), which lies between first- and second-neighbours in the ideal diamond 
crystal. The equilibrium lattice parameter is 5.341 A. The angular dependence of the 
Hamiltonian matrix elements is taken from tables produced by Slater and Koster [30]. 
Non-orthogonality of the atomic orbital basis set provides a large repulsive energy 
contribution to the total promotion and bond energies. To first-order in the overlap this 
gives rise to a repulsive pair potential which actually dominates other contributions to 
the pair potential. Consequently, the pair potential is taken to be of the form A/r4, 
where A is an empirical constant. 
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2.1.2. Computing minimum energy atomic configurations. We solve the Hamiltonian in 
real space using the recursion method [17,31-331. The recursion method enables matrix 
elements of the Greenian G = ( E  - H)-’ to be computed via a recursion algorithm and 
thereby the matrix elements of pout according to 

pp$p = - 21m IEF Ginjp(E + io+) dE. n 
In the recursion method each Green function matrix element is represented by an infinite 
continued fraction. If all the levels of the continued fraction were calculated exactly, 
using the recursion algorithm, then the Greenian and hence the density matrix would 
be exact. This is impractical; instead, the infinite number of levels of the continued 
fraction beyond a certain point are approximated by a terminator. This means that the 
computed density matrix is inexact. The main advantage of the recursion method, 
however, is that it allows the effects of successive shells of neighbours to be studied 
systematically since the accuracy of pout is determined by the number of exact levels (i.e. 
neighbour shells) used in the continued fraction before termination. 

The position of the Fermi energy E F  is fixed at the perfect crystal value for the number 
of levels at which the calculation is done. So, for five levels, EFis calculated by demanding 
that the five level LDOS gives four electrons per atom (in the case of silicon) when 
integrated up to EF, where the LDOS on atom i is given by 

For calculations using up to eight levels in the recursion method we use a square root 
terminator for a single band. When determining the LDOS of an atom in a given atomic 
configuration to a large number of levels (e.g. 20) gaussian quadrature [34] is used 
instead. An extensive discussion of termination in the recursion method has appeared 
elsewhere [35]. 

All the necessary quantities for calculating the total energy and force on each atom 
are now known for a given atomic configuration. The forces are used in a variable metric 
minimization method [36] to compute a new atomic configuration and the cycle is 
repeated until the maximum displacement of any atom over one iteration is less than 
some arbitrary small amount [e.g. 5 X  1 0 - 6 ~ ~ ] .  This is a static energy minimization 
procedure. There is no guarantee that the algorithm produces the global minimum and 
the relaxed structure is highly dependent on the starting configuration. Therefore a 
number of calculations were made using different starting configurations for the four 
silicon surfaces investigated in this work. 

We note that the methods of Chadi [3-61 and Guo-Xin and Chadi [7] are very similar 
to that described here, but differ in three principal ways. Firstly, we use the recursion 
method, rather than matrix diagonalization in kspace, in order to solve the tight-binding 
Hamiltonian; secondly we impose LCN as a form of self-consistency whereas in Chadi’s 
scheme there is no self-consistency and lastly the pair potentials are different. 

2.1.3. Analysis of errors. There are errors in our tight-binding calculations from a variety 
of sources. Some of them stem from the use of an empirical parameterization of the 
energy functional described in equation (1). The use of a minimal basis set also introduces 
errors. The assumption that LCN is an adequate representation of self-consistency is 
another source. These errors are extremely difficult to quantify even if ab initio cal- 
culations were available for comparison. In this section we describe the errors that arise 
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Table 1. Perfect crystal values of the Fermi energy EF (in eV), the cohesive energy per atom 
Ecoh (in eV), and the parameter A (in eV A4) as a function of the number of recursion levels 
computed both by the intersite method (ISM) and the site-diagonal method (SDM) within the 
TBB model. The lattice parameter is 5.341 A. In addition the dependence of the s--p mixing 
ratio SP,,, on the number of recursion levels is given (see section 2.1.4). 

Levels 2 3 4 5 6 7 8 

E y -0.205596 0.000359 0.080560 0.315072 0.297344 0.333416 0.381153 
EsDM -0.155854 -0.042520 0.027728 0.308013 0.325486 0.331552 0.391135 
E::! - 5.468236 - 4.794906 -4.736015 -4.803674 -4.792605 -4.780090 -4.770168 
E:ZM -3.482315 -4.671071 -4.545900 - 4.702427 -4.735065 - 4.696694 - 4.735542 
s p m  1.538336 1.674317 1.697180 1.689129 1.697580 1.701196 1.704515 
AISM 117.35285 115.11404 115.44143 115.99958 116.2712 116.27532 116.30106 
ASDM 113.02083 111.56384 116.39466 115.77384 115.80385 116.58478 116.24959 

from the use of the recursion method to a small finite number of levels, since these errors 
are open to quantitative study. 

When we say that the calculation has been performed to five recursion levels, we 
mean that five exact levels of the continued fraction have been computed using the 
recursion algorithm and the remainder have been approximated by a terminator. The 
errors we discuss in this section result from this use of a terminator in the continued 
fraction which causes the computed Green function matrix elements to be inexact. 

Consider the equilibrium condition of the perfect diamond cubic crystal at 0 K. At 
the required lattice constant the total internal pressure, resulting from the covalent bond 
energy and the pair potential energy, must be zero [20]. This condition was used [37] to 
determine the parameterA in the pair potential. However, in evaluating the contribution 
to the pressure from the covalent bond energy, the recursion method was used to obtain 
the relevant off-diagonal Green function matrix elements. Then the imaginary parts of 
these approximate Green function matrix elements were integrated up to the Fermi 
energy in order to obtain the off-diagonal density matrix elements (see equation (5)) 
that appear in the covalent bond energy, equation (4). As described in section 2.1.3, 
the Fermi energy is determined by integrating the imaginary part of the approximate 
diagonal Green function matrix elements until each atom is asociated with four electrons. 
It follows that the Fermi energy and the parameter A are dependent on the number of 
recursion levels because of the inexactness of the continued fraction representations of 
the Green function matrix elements. Thus, the binding energy per atom and the s-p 
mixing (defined by Paxton and Sutton [17] as the ratio of the occupancy of p-states to s- 
states on an atom) in the ideal crystal are also dependent on the number of levels for the 
same reasons. These dependencies are summarized in table 1. 

We have already pointed out (see equation (2.4)) that there are two methods for 
computing the sum of the covalent bond and promotion energies: the SDM and ISM. If 
the Green function matrix elements were exact, these methods would yield identical 
results. The discrepancies between the energies obtained by these methods is therefore 
some indication of the magnitude of the errors incurred by using the recursion method. 
However, it is important to bear in mind that in this work as in [ 171 and [37], we are using 
the matrix formulation of the recursion method [38], as modified by Paxton et a1 [37]. 
When we evaluate the covalent bond and promotion energies in the SDM, we do so by 
considering all four orbitals on each atom at a time, which results in a continued fraction 
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of 4 X 4 matrices. When we use the ISM, however, we consider the four orbitals on each 
of the neighbouring atoms of a bonded pair and evaluate a continued fraction of 8 x 8 
matrices. There is, therefore, a difference in the Fermi energy evaluated by the two 
methods, for the same number of exact recursion levels. This difference in the Fermi 
energies in the ISM and SDM calculations leads to different A parameters and binding 
energies per atom. That is why both sets of parameters are listed in table 1. The fact 
that, for the same number of recursion levels, the A parameters are different has an 
important consequence. It means that the SSDM and ISM energy functionals are not 
identical, not only because of the differences in the covalent bond and promotion 
energies, but also because the pair potential contributions are different. In this sense, 
we should regard the SDM and ISM representations as distinct energy functionals. When 
we carry out a static energy minimization, using equation (3) for the forces, we are, 
strictly speaking, minimizing the ISM energy functional and not the SDM energy func- 
tional. 

Because the SDM and ISM representations are really distinct functionals, we believe 
that a comparison of their energies exaggerates the errors of the recursion method. To 
obtain a more realistic estimate, we pose a slightly different question. Since the forces 
and energies may both be computed within the ISM we should estimate the errors arising 
from a finite number of recursion levels within the ISM only. To do this we recall that as 
the number of exact levels in the continued fraction tends to infinity the ISM becomes 
exact. We have therefore carried out a systematic series of calculations for the same 
surface (Si(ll0)-1 x 1) using the ISM between two and eight exact recursion levels. The 
aim is to see whether the atomic structure and the surface binding energy converge 
uniformly as a function of the number of exact levels, and to estimate the errors at a 
given number of levels. These calculations are described in section 3.1.2. 

2.2. The Stillinger- Weber potential 

The sw potential [11] assumes that the behaviour of silicon is adequately described by a 
combination of pair and three-body potentials u2(i, j )  and u3(i, j, k) where the total 
potential energy @ is given by 

@ = u2(i, j )  + u3(i, j ,  k) (7) 
I l k  

i < j < k  
' I  

with the i, j and kindicescorresponding to different atoms. Energy and length parameters 
E and CJ are then introduced so that u 2  and u 3  may be written in the form 

where 
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The parameter set is as follows: 

A = 7.049556277 

p = 4  q = o  a = 1.80 

A = 21.0 

B = 0.6022245584 

y = 1.20 

which fixes E and U if the potential is to predict the correct cohesive energy and density 
for Si at 0 K. It turns out that U = 2.0951 A and E = 1.0836 eV per atom. 

2.2.1. Static energy minimizations. We calculate that the equilibrium lattice parameter 
for the sw potential at 0 K is 5.431 A in agreement with Dodson [39]. Some care is 
needed if the total force on an atom is to be written as a sum of bond forces due to 
neighbouring atoms. The reader is referred to the appendix for details of how this 
decomposition is achieved. The resulting force expression together with the above 
prescription for the energy have been incorporated into the same variable metric mini- 
mization procedure that is used in the tight-binding relaxation in order to perform static 
energy minimizations with the sw potential. 

2.2.2. Monte Carlo simulated annealing. Reaching the optimum relaxed atomic con- 
figuration from the static energy calculation described above presupposes a starting 
configuration somewhere in the correct energy well. In order to try and overcome the 
possible confinement to a local, rather than a global, minimum, we have incorporated 
the sw potential into an MC simulation of annealing [40]. The simulation models consist 
of blocks of ten layers of atoms. Born-von Karman boundary conditions reproduce the 
block infinitely in the plane of the surface. For the Si(l l1) surface, each layer contains 
sixteen Si atoms and the top four layers were placed initially in the Pandey nbonded 
chain configuration [41-43]. For the Si(100) surface, the block contains 160 atoms per 
layer. The MC temperature parameter was set to 2500 K. This temperature resulted in 
disorder in the surface layers but the bulk did not melt. Each atom in turn was then 
moved 0.04 LP (fixed throughout the run) in a random direction, a value chosen to give 
an initial acceptance rate of -20%. The resultingenergy change was used in the standard 
MC criterion for accepting or rejecting a move. By reducing the temperature, by 2.5 K 
for Si(ll1) or  by2 Kfor Si( loo), every tenth cycle through all the atoms, the temperature 
was eventually brought to below 100 K. The process was repeated several times to ensure 
that the relaxed structures were reproduced. 

3. Results 

3.1. The TBB Model 

For the bulk terminated and energy minimized surfaces investigated in this work, the 
ISM and SDM surface binding energies relative to the perfect crystal are summarized in 
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Table 2. ISM and SDM energies (in mJ m-2) for the bulk terminated and relaxed surfaces 
according to the TBB model with local charge neutrality. 

Recursion ISM energy ISM energy SDM energy SDM energy 
Surface levels (ideal) (relaxed) (ideal) (relaxed) 

Si(ll0)-(1 x 1) 5 1750 1573 1376 1383 
Si(100)-(2 x 1) 8 1774 1343 1623 1270 
Si(ll1)-(2 x 1) 7 1437 1413 1226 1286 
Si(113)-(1 x 1) 6 1864 1378 1581 1116 

table 2. Note that for the Si(100)-2 X 1, Si(ll1)-2 X 1 and Si(113)-1 x 1 surfaces, all 
calculations have been performed with LCN; for the Si(ll0)-1 X 1 surface we present 
calculations both with and without imposing LCN. 

3.1.1. Position of the Fermi energy. The LDOS for a Si atom in the perfect crystal 
calculated to 5 ,6 ,7  and 8 levels of the recursion method using a single band square-root 
terminator is shown in figure 1 with the twenty level LDOS calculated with Gaussian 
quadrature for comparison. In each case the position of the Fermi energy calculated to 
the corresponding number of levels is marked by a vertical line. We find that the Fermi 
energy is always in the band gap. The actual values can be found in the figure caption. 
It is noted that if the LDOS were calculated exactly, then the Fermi energy would be at 
the top of the valence band, i.e. at 0 eV. 

3.1.2. The Si(IIO)-I x I surface. The ideal and relaxed surfaces are shown in figure 2. 
We find that static energy minimization with LCN to five recursion levels and a Ham- 
iltonian range of 0.5 LP results in no relaxation taking place along the (liO] direction. 
Following Chadi [ 5 ] ,  we can characterize the stable reconstruction by a tilt angle 8 
defined as 

e = Itan-'<z12/x12)l (13) 
where thex- and z-axes have been defined in figure 2 and x12 (zI2) is the difference in the 
x ( z )  coordinates of nearest neighbour atoms at the surface. We find that 8 = 31.3". The 
relaxed surface was obtained by giving the two surface atoms initial displacements in z 
of k0.02 LP. The final displacements from the ideal positions are given in table 3 together 
with the values of Ai for the five level relaxation. 

When LCN is switched off, relaxation of the same starting configuration to five levels 
(with an ISM energy of 1855 mJ mP2) results in an unbuckled surface very similar to the 
ideal surface shown in figure 2(a) with a final ISM energy of 1782 mJ m-2. This metastable 
surface could not be found when LCN was reimposed. For an initial displacement in z of 
20.05 LP, however, relaxation to five levels without LCN results in an energy minimized 
structure similar to that in figure 2(b) but with 8 = 29.0"C and an ISM energy of 
1477 mJ m-*. The ISM energy of the 8 = 29.0" structure differs from the ISM energy of 
the 8 = 31.3" structure by only 6.1%. Final displacements are in table 3. 

A breakdown of the surface binding energy into the promotion energy, the covalent 
bond energy and the pair potential energy contributions is given in table 4 for the ideal 
and 8 = 31.3" structures. By comparing the changes in these energy terms which occur 
due to relaxation, we find that the lowering in the surface binding energy is due to the 
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1 

-10 - 5  0 5 
E n e r g y  ( / e V )  

I 

-10 -5  0 5 -10 -5  0 5 
E n e r g y  ( / e V )  E n e r g y  ( / e V )  

Figure 1. The full curves correspond to the local density of states for an atom in the perfect 
crystal calculated to ( U )  5, ( b )  6, ( c )  7 and ( d )  8 levels of the recursion methodusing a single 
square-root terminator. The position of the Fermi energy EF is marked by a vertical full line. 
The actual values of EF (in eV) are 0.325,0.332,0.391 and 0.392, respectively, for (U)- (d) ,  
The broken curve in each case corresponds to the local density of states of an atom in the 
perfect crystal calculated to 20 recursion levels using Gaussian quadrature. It is included in 
order to emphasise that, at the relatively small number of levels at which the static energy 
minimization calculations are performed, the non-zero local density of states around EF 
results in EF being placed in the middle of the band gap. 

reduction in the promotion energy and the pair potential energy contributions; we find 
that the tilting of the surface chains of atoms is not driven by a lowering in the covalent 
bond energy. A summary of the individual bond energy changes for the 8 = 31.3" 
structure relative to the ideal surface is provided in table 5 .  
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Figure 2. (a) The bulk terminated Si(ll0) surface along the (1701 direction. (b)  The Si(ll0)- 
1 x 1 surfaceafterrelaxationwiththe tight-bindingbondmodel. Withlocalchargeneutrality, 
the tilt angle 0 = 31.3". Without local charge neutrality, the tilt angle 0 = 29.0". Numbers 
correspond to atom indices (see tables and text). 

Table 3. Final atomic displacements in lattice parameter units for the Si(ll0)-1 x 1 surface, 
according to the TBB model, after being relaxed self-consistently and non-self-consistently 
to give the buckled 0 = 31.3" and 0 = 29.0" structures, respectively. For the 8 = 31.3" 
structure the rigid shifts in the on-site Hamiltonian matrix elements Ai required to satisfy 
LCN are given in eV.  The relaxed surface and atom numbers are shown in figure 2. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.00 x lo-* 5.61 x lo-* 0.910 2.56 x lo-* 5.18 x lo-' 
4.63 x lo-? -7.20 x lo-' -0.080 5.57 x lo-? -7.03 X lo-' 

-8.87 x -1.25 X lo-* 0.074 -5.16 x -9.57 X 

-2.52 x 2.26 x lo-* 0.286 3.87 x 1.84 x lo-' 
8.59 x 9.96 x lo-' 0.077 -4.26 x 8.10 x lo-' 

-5.36 x -7.37 X 0.073 -1.30 X -6.30 X lo-' 
-1.06 x -3.88 x lo-' 0.040 -3.55 x -3.46 x lo-' 
-3.96 x 4.24 x 0.029 -4.26 x 3.69 x 

5.88 x -2.09 x 0.013 1.61 x -1.70 x 
1.65 x 10-4 1.90 x 10-3 0.011 1.24 x 10-4 1.67 x 10-3 

Finally, in figure 3 we present the results of the systematic study described in section 
2.1.4. We find that both the atomic structure and the ISM surface energy converge as a 
function of the number of recursion levels. We estimate the errors in the ISM energies at 
5 , 6 , 7  and 8 levels from these calculations to be +50 mJ m-*, i.e. +3%, and the errors 
in the atomic structure at 5 , 6 , 7  and 8 levels to be +P, i.e. 22%. These errors are with 
respect to an exact solution of the model Hamiltonian. 

3.1.3. The Si(100)-2 X 1 surface. The two surface atoms of the bulk terminated surface 
(figure 4(a)) were pinched together by displacing them by a small amount along [ O l l ] .  
This starting configuration was then relaxed with LCN to eight recursion levels and a 
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Table 4. Breakdown of the surface binding energy into the promotion energy Epro, the 
covalent bond energy E,,,, and the pair potential energy E,, for each of the surfaces studied 
with the TBB model. The 'Difference' row gives the differences between the relaxed surface 
and the reference configuration. In each case local charge neutrality has been imposed to 
ensure global charge conservation. All energies are given in eV. 

Surface E,,,, E,," E,, 

Ideal 110 
Relaxed 110 
Difference 

Unbuckled 100 
Relaxed 100 
Difference 

Untilted 111 
Relaxed 111 
Difference 

Ideal 113 
Relaxed 113 
Difference 

44.1310 
43.0059 
-1.1251 

45.4278 
44.9371 
- 0.6336 

65.4796 
64.2650 
-1.2146 

92.4982 
94.1585 
+ 1.6603 

-218.658 
-217.154 

+1.504 

-218.320 
- 2 19.104 

-0.784 

- 315.058 
-314.282 

+0.776 

- 462.433 
-462.896 

-0.463 

109.478 
108.877 
-0.601 

108.572 
109.775 
+1.203 

156.243 
156.594 
+0.351 

231.662 
229.030 
-2.632 

Table 5. Breakdown of the bond energy for the relaxed Si(ll0)-1 X 1 surface into the ssu, 
spa, ppa and ppx components for each bond in the surface region identified by the atom 
number of the atom at either end of the bond. E,, is the total covalent bond energy between 
atom i and atom j. All energies are in eV and represent the change relative to the cor- 
responding bond in the idal surface. Atom numbers are given in figure 2. This analysis gives 
a picture of the local chemistry. In particular it demonstrates that despite a strengthening in 
the back-bonds to atom 2 as a result of tilting, the back-bonds to atom 1 are weakened by a 
greater amount (see text). 

Atomi Atom j AE,,, AE,,, AE,,, AE,,, AE,, 

1 2 0.431 0.209 -0.144 -0.047 0.449 
2 3 -0.156 -0.137 -0.866 -0.201 -1.360 
1 4 0.355 0.888 0.637 0.505 2.385 

4 5 0.123 0.227 0.297 0.047 0.694 
3 6 0.039 0.119 0.082 0.059 0.299 
5 6 0.036 0.048 0.032 0.002 0.119 

5 8 0.053 0.111 0.187 0.028 0.379 
7 8 0.006 0.011 0.010 0.001 0.027 
8 9 0.021 0.043 0.071 0.009 0.144 

9 10 0.001 0.003 0.003 0.001 0.008 

3 4 0.035 -0.033 -0.099 -0.059 -0.155 

6 7 -0.023 -0.065 -0.160 -0.044 -0.292 

7 10 -0.018 -0.037 -0.052 -0.011 -0.118 

Hamiltonian range of 0.55 LP. The final relaxed configuration is shown in figure 4(b) and 
consists of asymmetric buckled dimers. Final displacements relative to the ideal surface 
are given in table 6. There is no significant relaxation along the [ O i l ]  direction. Table 6 
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Figure 3. (a )  Systematic study of the ISM energy for the Si(ll0)-1 X 1 surface relaxed with 
local charge neutrality as a function of the number of recursion levels. (b)  Variation of the 
tilt angle characterising the atomic structure of the relaxed Si(ll0)-1 x 1 surface with the 
number of recursion levels (see text). 

Figure4. (a )  The bulk terminated Si(100) surface along the [Oil] direction. (b)  The Si(100)- 
(2 x 1) surface after relaxation with the tight-binding bond model. The surface has adopted 
an asymmetric buckled dimer reconstruction. 

also contains the A, values calculated to eight levels. In addition we find that a symmetric 
unbuckled dimer configuration obtained from a relaxation using the Stillinger-Weber 
potential has an ISM energy of 1383 mJ m-2, calculated with LCN, eight recursion levels 
and a Hamiltonian range of 0.55 LP. This is very close to the value of 1343 mJ m-2 listed 
in table 2 for the asymmetric buckled dimer surface. Given the three per cent error in 
our calculated energies, we cannot distinguish between these two reconstructions. The 
final atom displacements and Ai values for the symmetric dimer surface are also given 
in table 6 .  

A breakdown of the surface binding energy is given in table 4 for both relaxed 
structures. We find that tilting of the surface dimers is accompanied by a reduction in 
the promotion energy and the covalent bond energy but that these reductions are almost 
exactly compensated by an increase in the pair potential energy. The changes in the 
individual bond energies between the symmetric dimer surface obtained from the Stil- 
linger-Weber relaxation and the asymmetric buckled dimer structure are summarized 
in table 7 .  
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Table 6. Final atomic displacements in lattice parameter units for the Si(100)-2 x 1 surface, 
after being relaxed self-consistently with the TBB model, together with the rigid shifts in the 
on-site Hamiltonian matrix elements A, required to ensure LCN (in eV). The relaxed surface 
and atom numbers are shown in figure 4. Corresponding values for the symmetric dimer 
surface are given in brackets. 

Atom number i Ax, Az, A, 
~~~ ~ 

1 -1.79 X lo-’ -8.45 x lo-’ -0.096 
(-1.32 x lo-’) (-1.72 X lo-’) (0.683) 

2 1.10 x lo-’ 2.61 x 10-3 0.867 
(1.32 X lo-’) (1.73 X (0.681) 

3 -1.23 X lo-’ -4.46 x 10-3 0.071 
(-2.12 X lo-’) (3.57 X (0.568) 

4 2.39 X lo-’ 1.64 X lo-’ 0.504 
(2.12 x lo-’) (3.57 x (0.567) 

5 -2.88 x 10-4 -2.24 x lo-’ 0.345 
(5.49 x lo-’) (-2.03 x lo-’) (0.435) 

6 1.32 x 2.55 X lo-’ -0.078 
(3.06 X (2.05 X lo-’) (0.120) 

7 -2.13 x 10-3 -1.30 X lo-’ 0.190 
(-2.68 x lo-’) (-1.31 x lo-’) (0.268) 

8 1.73 X lo-’ 1.55 x 0.019 
(-2.40 X lo-’) (1.33 X lo-’) (0.118) 

9 3.91 x 10-3 1.99 x 10-3 0.053 
(6.18 X (3.72 X (0.119) 

10 -5.78 X -1.21 x 10-3 0.065 
(-6.23 X lod3) (-8.11 X (0.119) 

Table 7. Breakdown of the bond energy for the relaxed Si(100)-2 x 1 surface similar to that 
in table 5. Each entry represents the change relative to the corresponding bond in the untilted 
symmetric dimer reconstruction obtained from a relaxation using the Stillinger-Weber 
potential. Atom numbers are given in figure 4. This analysis enables the contributions to the 
lowering in the covalent bond energy on tilting to be identified. 

Atomi Atomj AE,,, AE,,, AE,,, AE,,, AE,, 

1 
1 
2 
3 
4 
3 
4 
5 
6 
7 
8 
7 
8 
9 

2 
3 
4 
5 
5 
6 
6 
7 
8 
9 
9 

10 
10 
11 

0.254 
-0.121 

0.117 
0.119 
0.141 

-0.050 
-0.015 
-0.010 

0.023 
-0.015 

0.024 
-0.012 

0.028 
0.008 

-0.742 
-0.384 

0.038 
0.460 
0.040 

-0.136 
-0.060 
-0.029 

0.050 

0.072 

0.044 
0.013 

-0.028 

-0.033 

0.317 
-0.300 
-0.190 

0.082 
0.446 
0.081 

-0.207 
-0.067 

0.061 

0.168 

0.015 
0.013 

-0.050 

-0.039 

-0.536 
-0.249 

0.065 

0.115 
-0.019 

-0.003 
-0.083 
-0.031 

0.018 
-0.010 

0.030 
-0.011 

0.009 
0.003 

-0.707 
- 1.054 

0.030 
0.642 
0.742 

-0.108 
-0.365 
-0.137 

0.152 

0.295 

0.096 
0.038 

-0.103 

-0.095 
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Figure 5. (a )  The Pandey n-bonded chain reconstruction for the Si( 11 1)-2 x 1 surface along 
the [Oil] direction; this was the starting configuration for the tight-binding relaxation. ( b )  
The Si(ll1)-(2 x 1) surface after relaxation with the tight-binding bond model. The surface 
atoms (shaded) have been tilted by 30.4". 

Table 8. Final atomic displacements in lattice parameter units for the Si(lll)-2 X 1 surface, 
after being relaxed self-consistently with the TBB model, together with the rigid shifts in the 
on-site Hamiltonian matrix elements A, required to ensure LCN (in eV). The relaxed surface 
and atom numbers are shown in figure 5. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.67 x lo-' 
5.71 x lo-' 

1.65 x lo-' 

1.82 X lo-' 
4.98 X lo-' 

-1.47 x 10-.' 
1.00 x 10-3 

-1.88 x lo- '  

-2.25 X lo-' 

-1.42 X 

4.68 X 

1.23 X lo-' 
-8.21 x 10-3 

2.21 x 10-3 
3.09 x 10-3 

2.77 x lo-? 

1.44 X lo-' 

-1.82 X lo-' 

-2.36 x lo-' 

- I  .34 X lo-' 

0.039 
0.606 
0.164 
0.120 
0.225 
0.277 
0.362 
0.046 
0.137 
0.093 

3.1.4. The Si(ll1)-2 X 1 surface. We constructed the n-bonded chain model of this 
surface suggested by Pandey [41-431 and shown in figure 5(a). It has an ISM energy of 
1470 mJ m-'. We find that relaxation with LCN to seven recursion levels and a Ham- 
iltonian range of 0.55 LP results in the n-bonded chains becoming tilted with a tilt angle 
of 30.4" relative to the starting configuration. The relaxed surface is shown in figure 5(b). 
In table 8 we present the final atom displacements from the ideal structure. No significant 
relaxation takes place along the [ O i l ]  direction. Table 8 also contains the Ai values 
calculated to seven levels. 

A breakdownofthesurface bindingenergy isgiven intable4for the relaxedstructure; 
in addition we give the breakdown for the untilted n-bonded chain model shown in 
figure 5(a). We find that the tilting of the surface n-bonded chains is driven by a 
reduction in the promotion energy. A breakdown of the individual bond energies of the 
relaxed structure relative to the untilted configuration is given in table 9. 
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Table 9. Breakdown of the bond energy for the relaxed Si(lll)-2 X i surface similar to that 
in table 5. Each entry represents the change relative to the corresponding bond in theuntilted 
n-bonded chain surface. Atom numbers are given in figure 5. 

~ 

Atomi Atom] AE,,, AE,,, AE,,, AE,,, AE,, 

1 2 
2 3 
1 4 
3 4 
3 5 
4 6 
5 7 
6 7 
5 8 
6 8 
7 9 
8 10 
9 11 

10 11 
9 12 

10 12 

0.605 
0.369 
0.167 

-0.060 
0.161 
0.008 
0.001 

-0.099 
0.058 
0.019 

0.103 

0.008 
0.004 
0.033 

-0.081 

-0.023 

-0.144 
0.552 
0.161 

0.318 
0.114 
0.001 

-0.175 
0.139 
0.048 

0.203 
-0.044 

0.012 
0.01 1 
0.066 

-0.131 

-0.159 

-0.230 
-0.455 
-0.698 
-0.048 

0.505 
-0.324 
-0.01 1 
-0.220 

0.220 
0.008 

-0.158 
0.235 

-0.071 
-0.002 

0.015 
0.091 

0.076 
0.282 

-0.043 
-0.069 

0.155 
0.070 

-0.012 
-0.079 

0.032 
0.000 

-0.058 
0.064 

-0.020 
-0.008 

0.006 
0.019 

0.307 
0.748 

-0.412 
-0.308 

1.139 
-0.132 
-0.021 
-0.573 

0.448 
0.075 

0.605 
-0.158 

0.010 
0.036 
0.209 

-0.455 

Figure6. ( a )  The bulk terminated Si(113) surface along the 0101 direction. (6) The Si(113)- 
1 x 1 surface after relaxation with the tight-binding bond model. The surface has adopted a 
‘rebonding at steps’ reconstruction. 

3.1.5. The Si(113)-1 X 1 surface. We reconstructed the ideal surface shown in figure 
6(a) by pinching together the twofold coordinated atom at the surface with an atom in 
the same sublattice but in the second layer down to give a 1 X 1 periodicity. This 
rebonding at steps reconstruction leads to a 66.7% reduction in the density of dangling 
bonds. Relaxation with LCN to six recursion levels and a Hamiltonian range of 0.55 LP 
resultsin the newly formed bondsspringing apart. Once thisoccurs, the distance between 
atom 1 and atom 5 and the distance between atom 2 and atom 6 (see figure 6(a)) both 
exceed the Hamiltonian range and the bond is never reformed. We therefore repeated 
the relaxation with the same starting configuration but with a Hamiltonian range of 
0.6 LP. This still lies between first and second neighbours in the perfect crystal. We find 
that the rebonding at steps reconstruction shown in figure 6(b) is stable, but that the 
final bond lengths between atom 1 and atom 5 and between atom 2 and atom 6 are 
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Table 10. Final atomic displacements in lattice parameter unit sfor the Si(113)-1 x 1 surface, 
after being relaxed self-consistently with the TBB model, together with the rigid shifts in the 
on-site Hamiltonian matrix elements A,, required to ensure LCN (in eV). The relaxed surface 
and atom numbers are shown in figure 6. 

Atom number i Ax, AZ, A, 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.18 x lo-' 
1.17 x lo-' 

-3.18 X lo-* 
-3.02 x lo-' 

1.68 x lo-* 2.31 x 
1.64 x lo-* 

-3.33 x lo-* 
-3.26 x lo-' 

2.34 x lo-' 

2.34 X lo-* 
1.57 X lo-* 
1.65 X lo-* 

-2.83 X lo-'' 
2.55 x 5.45 x 10-4 

-1.69 x 1.79 x 10-3 
-1.63 X 2.32 x lV3 

0.466 
0.471 
0.616 
0.618 
0.385 
0.388 
0.478 
0.477 
0.356 
0.354 

Table 11. Energies (in mJ m-') of the bulk-terminated surfaces investigated in the present 
work according to the Stillinger-Weber potential together with the energies after relaxation. 
Note that for Si(ll0)-1 X 1 and Si(ll1)-2 X 1, the relaxed surface is the bulk-terminated 
surface according to the Stillinger-Weber potential. 

Surface Unrelaxed energy Relaxed energy 

Si( 1 lo)-( 1 X 1) 1721 
Si(100)-(2 X 1) 2434 
Si(ll1)-(2 x 1) 1405 
Si(113)-(1 x 1) 2201 

1721 
1489 
1405 
1640 

stretched by 27.1% and 27.6%, respectively, relative to a bond in the perfect crystal. 
The final displacements relative to the ideal surface are given in table 10 together with 
the values calculated to six levels. There is no significant relaxation along the [ i l O ]  
direction. 

Table 4 contains the breakdown of the surface binding energy for the ideal and 
relaxed structures. We find that the stability of the relaxed surface is controlled both by 
a reduction in the covalent bond energy and a reduction in the pair potential energy. 

3.2. The swpotential 

We calculate the range of interaction of the sw potential to be 0.694 LP. The energies of 
the ideal bulk terminated surfaces as well as the final energies of the relaxed surfaces 
according to the sw potential are given in table 11. 

In the case of the Si(ll0)-1 x 1 surface, we find that static minimization predicts 
no buckling of the surface chains. Furthermore, the effect of relaxation on even an 
extensively reconstructed set of coordinates is to move all the atoms back to their bulk 
terminated positions unless an atom is moved beyond the range of interaction of the 
potential in which case an ideal vacancy results. 
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Figure 7. One of the two metastable surfaces for 
Si(ll1)-2 x 1 found by the Stillinger-Weber 
potential. Shaded atoms have five neighbours. 
The other metastable surface closely resembles 
the untilted n-bonded chain configuration shown 
in figure 5(a ) .  

For the Si(100) surface, if the two surface atoms are moved so that they are less 
than 0.694 LP apart, we find by static minimization that an untilted symmetric dimer 
reconstruction is a stable configuration. We stress that in the static calculation we have 
limited ourselves to a 2 X 1 surface unit cell. We have confirmed by MC simulated 
annealing that untilted symmetric dimers are preferred, but find that dimerization is 
accompanied by a substantial number of defects. 

When the Pandey n-bonded chain reconstruction of the Si(ll1)-2 x 1 surface is 
made the starting configuration for the static minimization, we find that both an untilted 
chain configuration (similar to figure 5(a)) and a structure involving fivefold coordinated 
atoms (figure 7) are stable structures with energies of 1858 mJ m-* and 1853 mJ m-2, 
respectively. Both of these are metastable, however, since they have higher energies 
than the ideal bulk terminated Si(ll1) surface (see table 11). In the MC simulation we 
have confirmed that the Pandey n-bonded chain configuration is returned to the ideal 
bulk terminated surface after simulated annealing with this potential. Initially, the 
surface became highly disordered in appearance. As the temperature fell, the atoms 
were returned to their bulk terminated positions. The bulk structure resulted after every 
run, although, as figure 8 shows, there is sometimes some disorder present, probably 
due to cooling too rapidly. 

In the case of the Si(113)-1 X 1 surface, we find by static minimization that the sw 
potential predicts the rebonding at steps reconstruction to be stable. The final atomic 
structure is very similar to the TBB model result (figure 6(b) ) .  

4. Discussion 

4.1. The TBB model 

4.1.1. Position of the Fermi energy. As explained in section 2.1.3, the Fermi energy is 
fixed at the perfect crystal value for the number of recursion levels at which the static 
minimization calculation is performed. If the density matrix were computed accurately, 
the Fermi energy would be fixed at the top of the valence band, since there are no 
dangling bonds and hence no electronic states in the band gap of the perfect crystal. By 
fixing the Fermi energy to be the same as that of the perfect crystal we do not allow the 
Fermi energy to re-adjust in the presence of the surface. Since the difference in the exact 
Fermi energies for the perfect crystal and the semi-infinite crystal is approximately half 
the band gap, we make an increasing error in the Fermi energy for the semi-infinite 
crystal as the number of recursion levels increases. However, we have shown in figure 1 
that to 5 ,  6 , 7  and 8 recursion levels (the numbers used in subsequent calculations) the 
perfect crystal LDOS is non-zero in the band gap region. This is because the calculated 
density matrix is not exact. As can be seen, this has the effect of placing the Fermi energy 
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( c )  ( d  1 

Figure 8. Monte Carlo simulated anneal of the Si(ll1) surface using the Stillinger-Weber 
potential. The surface is viewed from above, with the larger circles representing atoms nearer 
the surface. The Pandey n-bonded chain structure (large atoms) is shown in (a). Annealed 
configurations are shown at ( b )  2000 K and (c) 1700 K.  In ( d ) ,  at 100 K,  most atoms have 
been returned to their bulk positions. Some disorder remains, possibly due to cooling too 
rapidly. 

in the middle of the band gap so that its position is not violated. In effect, the calculation 
is made legitimate because we only use a small number of recursion levels in the static 
minimization and we use a square-root terminator for a single band. 

4.1.2.  The Si(IIU)-I x I surface. The tilt angle of 31.3" for the relaxed surface we find 
with LCN (see figures 2(a) and (b) )  is in good agreement with the tilt angle of 30" obtained 
by Chadi [ 5 ] .  An untilted surface with a degenerate ground state is not expected 
according to the Jahn-Teller theorem. Unfortunately, this theorem does not provide 
any information about the magnitude of the distortion. The breakdown of the surface 
binding energy given in table 4 allows us to identify the cause of tilting as being largely 
due to a re-hybridization of the surface atoms and not due to a lowering in the covalent 
bond energy. Indeed, the breakdown of the individual bond energies given in table 5 
shows that despite a strengthening in the two back-bonds to atom 2 as a result of tilting 
(see the bond energies between atoms 2 and 3 in table 5), the two back-bonds to atom 1 
are weakened by a greater amount (see the bond energies between atoms 1 and 2 in 
table 5). The increase in the covalent bond energy is consistent with the lowering in the 
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pair potential energy which can only mean that there is a net increase in the average 
bond length. 

3.1.3. Local charge neutrality. The fact that, for the Si(ll0)-1 X 1 surface, energy 
minimization without imposing LCN gives rise to a tilt angle of 29.0" and an energy similar 
to the self-consistent result is significant since it indicates that LCN is unimportant in 
determining the relaxed atomic configurations of surfaces. The concept of charge trans- 
fer and the importance of LCN within the framework of the TBB model has already been 
discussed in relation to assemblies of atoms in which there is fourfold coordination 
everywhere (e.g. at grain boundaries) [17]. The result is that in such systems LCN has a 
negligible effect on the bond forces and hence on the minimized atomic structure. At a 
surface, however, lower coordination numbers are the rule rather than the exception so 
the argument needs to be modified accordingly. To clarify the issue here, we note that 
the Ai values will affect the off-diagonal density matrix elements obtained by solving the 
Hamiltonian. Since the off-diagonal density matrix elements enter into equation (3), it 
might be expected that removal of the LCN condition would give rise to different relaxed 
atomic configurations. In contrast, the results indicate that this expectation is not borne 
out. 

We can regard switching off LCN as a perturbation; AH applied to the self-consistent 
Hamiltonian Hsc giving a perturbed or non-self-consistent Hamiltonian, Hnscc. 

Hnsc = Hsc + AH. (14) 

(15) 

Here AH is purely diagonal: 

AH. 1 M P  = -AiSijSa;o. 
Following standard perturbation theory, we can write the surface energy corresponding 
to the non-self-consistent Hamiltonian Ens' in terms of the surface energy corresponding 
to the self-consistent Hamiltonian Esc according to 

(16) Ens' = E S C  + E ( ' )  + E(2) + E(3) + . . . 

where E(')  is the ith order correction. Within this perturbative scheme we are now asking 
whether or not AH is significant. 

Note that we define the surface energy Esurf to be the binding energy of a semi-infinite 
system of atoms relative to the binding energy of the same atoms as if they were in the 
perfect crystal. Explicitly, using equation (1), 

Tr(P:"' - P f ) 4  + (PPh - [Tr(P;,"' - Pf)Hpc + (Pdpcl (17) ESWf = 

where the s and pc subscripts refer to the surface and perfect crystal systems respectively, 
and p p  is the pair potential which enters the parametrization. We can regard Esurf as a 
multi-dimensional hypersurface since it is a function of all the atomic positions. The 
change in the surface energy A Esurf when the LCN condition is switched off for an assembly 
of atoms with fixed positions is just 

(18) 

(19) 

AESUrf = EnSC - ESC. 

Using equation (17) we obtain 

Tr(pnsc - pf)HnSC - Tr(PSCpf)HSC. AESUrf = 

But AH is diagonal (equation (15)), so that 
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Tr(psc - pf)AH = 0. (20) 

Tr(pnsc - psc)HH""'. (21) 

Combining (19) and (20) it follows that AEsurf is given exactly by 
A E S U I f  = 

Now, since pnsc is formed from eigenstates of Hnsc it follows that to first order in dpnSc we 
have 

Tr dpnscHnsc = 0.  (22) 
As noted by Paxton and Sutton [17], it follows that E(') is zero. However, the second- 
order change in the surface energy, E(2), is non-zero. Following Sutton et al[20], it may 
be expressed as 

EF 
E(2)  = 1 ( E  - EF)ANdE + iN(EF)(AEF)2 (23) 

where AN is the change in the total density of states caused by the perturbation AH and 
the change in the Fermi energy AEF is given by 

AE -- J ' ANdE. 
- N(EF) 

Equation (23) incorporates the condition of global charge conservation. Since, in our 
model, each atom in the perfect crystal has a finite density of states at the Fermi energy 
(see figure 1) we argue that N(EF) is effectively infinite and deduce from equation (24) 
that AEF is zero. Retaining only the second-order terms in equation (23) we obtain 

E(2) = 4 2 x..A.A, I1 1 I (25) 
i j  

where 

Here we have used the fact that A H  varies linearly with Ai. Thus there is no second- 
order term in AH, By choosing the integration variable to be E/W,  where Wis the total 
'bandwidth', which in our model includes both the valence and condition bands, we 
obtain L 

where 

The Ink) label the eigenfunctions of the semi-infinite crystal and the Enk are the cor- 
responding eigenvalues. The Green's functions only have imaginary components for 
energies that lie within the bands. Consequently, both E' and E,k/Wmust be fractional 
for energies lying within the integration window of equation (27). Assuming that the 
integrand in (27) is of order unity we deduce that xii is of the order EF/W2, where EF is 
measured from the bottom of the valence band. Thus each term contributing to .E(') in 
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(25)  is of the order (EF/2) (A ,W)  (A , /W) .  For A, = 1 eV (an upper limit), EF = 10 eV 
and W = 20 eV we find that each term in (25) is approximately 1/80 eV. This order of 
magnitude argument explains why the difference in energy of the same surface structure, 
computed with and without on-site Hamiltonian matrix element shifts of up to 1 eV, is 
so small. A similar analysis indicates that the change in the force on an atom exerted by 
a neighbour when the A, values are reset to zero is of the order of (EF/W)(A , /W)  = 
1/40. Thus each bond force changes at most by a few per cent. 

The above discusssion explains why a surface relaxed self-consistently with LCN is 
likely to fall into the same minimum as a surface relaxed non-self-consistently. The fact 
that for the Si(l10)-1 x 1 surface there are very small differences in the relaxed atomic 
structures is presumably due to the effect of the above second-order terms in the energy. 
For the high-energy metastable surface found in the non-self-consistent relaxation of 
Si(ll0)-1 X 1 these terms are important enough to the extent that no corresponding 
minimum could be found when the relaxation was carried out self-consistently. Our 
results for the Si(llO)-l X 1 surface indicate that if the conformational minimum is a 
deep well on the energy hypersurface then the second-order terms are not significant 
despite seemingly very large shifts (-1 eV) in the diagonal Hamiltonian matrix elements 
required in order to guarantee LCN. 

In conclusion, the effect of LCN is to introduce second-order charges in the energy 
and first-order changes in the interatomic forces. However, since the total bandwidth of 
the valence and conduction bands is so large compared with typical variations in the 
on-site Hamiltonian matrix elements, LCN is significant only when energy differences 
between alternative surface structures are very small, i.e. of the order of a few per cent. 
It follows that surface reconstructions in general are not driven by charge transfer effects 
provided the material has a large bandwidth. We note that this study confirms the results 
of Alerhand and Mele [44] who, by incorporating a Hubbard-like term into their model 
Hamiltonian, showed that for the Si(100)-2 X 1 surface the on-site repulsion has a 
relatively minor effect on the magnitude of the tilt angle of the surface dimers. 

4.1.4. Energy convergence in the recursion method. The results of the systematic study 
described in section 2.1.4 and shown in figure 3 show that, although not monotonic, the 
ISM energy for the ideal and relaxed Si(llO)-l X 1 surface as well as the tilt angle for the 
relaxed surface do appear to converge as a function of the number of levels. This is 
important because it means that in working to a small number of levels (e.g. 5-8) we can 
have confidence in the final structure because we are looking at energy changes which 
lie outside the noise level of the calculated surface energies, i.e. ?3%. Since we are 
minimizing the ISM energy functional and not the SDM energy functional we should not 
be surprised if the final SDM energy is greater than the SDM energy for the ideal surface. 
Indeed, this is found for the Si(ll0)-1 X 1 surface when working to five levels and for 
the Si(lll)-2 x 1 surface at seven levels (see table 2) .  

4.1.5. The Si(100)-2 X 1 surface and localized surface vibrational modes. The Si(100)- 
2 x 1 surface has been extensively studied by a large number of workers [44-46]. The 
purpose of this study is to address the question of whether there is any buckling of the 
surface dimers which are present on this surface. 

Low-energy electron diffraction (LEED) experiments appear to be inconclusive with 
lack of agreement between different groups [47,48]. STM experiments [49,50] show that 
in reality the surface is characterized by a large number of defects, in addition to surface 
dimers, which may account for this disagreement. It seems that defects are important 
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for stabilizing this surface: we return to this again briefly in section 4.2. The STM images 
show the existence of surface dimers with varying degrees of tilt depending on their 
location relative to defects in the surface. 50% of the dimers appear to be buckled 
(concentrated near defects) while in the defect-free areas the surface seems to be 
composed of symmetric unbuckled dimers. In a calculation of the phonon spectrum of 
the Si(100)-2 x 1 surface, Alerhand and Mele [44] find that there is a localized 
vibrational mode corresponding to a rocking oscillation of the surface dimers. They also 
argue that, because a metallic state associated with unbuckled, symmetric dimers has not 
been observed experimentally, it follows that the surface dimers cannot be symmetric. 
However, we note that such metallic states have been observed [51,52] so that symmetric 
dimers are entirely reasonable. 

In our TBB model study we do not attempt to incorporate defects as such a study would 
be prohibitively expensive in computer time. Thus direct comparison with experiment is 
not currently possible, although the STM experiments do seem to indicate that the 
energy difference between the buckled and unbuckled dimer orientations is small. We 
emphasise that in our static calculations we have limited ourselves to a surface periodicity 
of 2 x 1. Our relaxed configuration consisting of asymmetric buckled dimers (figure 4 
and table 6) is essentially the same as that obtained by Chadi [4,45]. However, we have 
also shown that a symmetric unbuckled dimer configuration from a relaxation using the 
Stillinger-Weber potential is equally likely. That a symmetric dimer reconstruction 
should be stable is contrary to the findings of previous tight-binding studies and agrees 
with the observations from STM. We note that tilting of the dimers results in a lowering 
of the promotion energy, as in the case of the Si( 110)-1 X 1 surface, as well as a lowering 
in the covalent bond energy (see table 4). Both these reductions are compensated, 
however, by an increase of tilting in the pair potential contribution demonstrating that 
the tilted configuration has net shorter bonds. This is consistent with the large reduction 
in the bond energy of the two back-bonds to atom 1, as well as the reduction in the 
covalent bond energy between atoms 1 and 2, which we find on tilting (see table 7 ) .  We 
stress the importance of the reduction in the promotion energy on tilting, for although 
in this case there is a balance of terms so that neither configuration is preferred, in 
general this is significant because it shows that there is a strong tendency towards re- 
hybridization as a means of lowering the surface energy. 

During a relaxation when self-consistency was imposed only for every fifth set of 
computed coordinates (to conserve global charge), we observed the asymmetric buckled 
dimers flip over to give a buckling in the opposite sense. The effect of not demanding 
self-consistency for every iteration is to create a discontinuous change in energy as the 
calculation jumps between energy hypersurfaces. This is equivalent to giving each atom 
a non-conservative force. The observation strongly suggests that the energy barrier 
separating the two possible buckling orientations is small. We therefore agree with 
Alerhand and Mele that a surface vibrational mode may provide a mechanism for 
interconverting between the various stable and metastable higher order reconstructions 
such as c(4 x 2) and p(2 X 2) which are found on this surface. 

In summary, this theoretical study predicts that both buckled and unbuckled dimer 
reconstructions should coexist on a defect-free surface. The prediction of symmetric 
dimers agrees with the observations from STM. Asymmetric dimers, although observed 
near defects, may also be present in defect-free areas but disguised by means of a 
surface vibrational mode which results in apparent symmetric dimers as a time-averaged 
configuration. In confirmation of this, we observe that the energy barrier separating the 
different energy minima is small. 
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4.1.6. I7-bonded chain model for the Si(111)-2 X 1 surface. The n-bonded chain model 
for the Si(111)-2 X 1 surface was originally suggested by Pandey [41-43] and the exist- 
ence of n-bonded chains has been confirmed by STM measurements [53-56]. Total energy 
pseudopotential calculations have been performed by Northrup and Cohen [57,58] who 
find that a small tilting of the chains in the Pandey model lowers the energy and 
such buckling has been found experimentally in ion scattering experiments [59, 601, 
Dynamical LEED calculations [61,62], however, find that a small tilt gives a poor fit with 
experimental LEED data and an improvement is obtained by introducing a much larger 
tilting of the chains with avertical difference in position of the two surface atomsparallel 
to the surface normal (Az) of 0.38 A. An independent study [63] came up with similar 
results (Az = 0.35 A), but in all cases the final fit factor is greater than the maximum 
value of 0.3 required for confidence. For more details about previous work carried out 
on this surface the reader is directed to a thorough review article by Pandey [43]. 

Our results (figure 5 and table 8) predict a tilting of the n-bonded chains (Az = 
0.65 A) which is larger than the tilt suggested by LEED, but given the lack of reliability 
of the LEED fit factor it is reasonable to question the LEED results. It would be interesting 
to put the structure shown in figure 5(b) into a dynamical LEED calculation and thereby 
achieve a more direct comparison with experiment. The main point is that the TBB model 
has preserved the basic form of the Pandey model. In addition we can understand what 
drives the tilting of the n-bonded chains in our results in terms of a reduction in the 
overall promotion energy (see table 4), which, as for the Si(ll0)-1 X 1 surface, can be 
interpreted in terms of a re-hybridization of the surface atoms. 

It is pointed out that the STM images are inconclusive regarding the magnitude of the 
tilt on this surface. Furthermore, it is not clear whether they even confirm the Pandey 
model since only the top layer is imaged. A new model for this surface proposed by 
Haneman [46] and based on triple bond cleavage is also consistent with the STM results. 
Not only does it involve n-bonded chains, but also it explains the STM observation of 
surface buckling along the chains because the atoms in the surface are not in identical 
environments. 

Thus we have confirmed that the TBB model behaves sensibly when relaxing this 
extensively reconstructed surface and found that tilting of the n-bonded chains is driven 
by a tendency for the surface atoms to rehybridize. Despite the large experimental effort 
that has gone into investigating this surface it seems that the detailed atomic structure is 
still unresolved and that further experiments are necessary. 

4.1.7. Rebonding at steps on the Si(113)-1 X 1 surface. High resolution transmission 
electron microscopy (TEM) experiments have shown 1641 that low-energy surfaces need 
not be confined to high-symmetry orientations and in particular that annealing of a 
Si(ll0) thin specimen causes extensive areas of Si(113) to be formed by faceting at the 
edges of the sample. The periodicity appears to be n X 1 since the TEM image only gives 
the periodicity along the [332] direction. Salisbury and Huxford [65] conclude that on 
the basis of present evidence a 1 x 1 rebonding at steps reconstruction is the most 
probable structure for this surface although more experimental evidence is needed to sort 
out theperiodicityin the [ 1101 direction. The Si( 113) surface has also been investigated by 
Chadi [6], but his reconstruction is based on the other of the two distinct surfaces 
with a (113) orientation to that connected with the present study. Very recent LEED 
experiments [66] indicate that the surface is in fact 3 x 1 reconstructed; we do not 
consider this reconstruction here. 
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As summarized in table 2, the relaxed Si(113)-1 X 1 surface has an energy com- 
parable to that of the other surfaces we have studied. The present study has shown that, 
despite a lowering in the covalent bond energy during relaxation, the major effect is the 
reduction in the pair potential energy as a result of the highly stretched bonds at the 
surface (see table 4). While it is encouraging that the Si(113)-1 x 1 surface has a 
relatively low energy, given the magnitude of the bond distortions, it seems likely that 
other reconstructions may give a relaxed surface of lower energy. A 3 X 1 reconstructed 
surface, as suggested by LEED, may well enable some of the distortions present in the 
1 X 1 reconstruction to be believed. 

4.2.  The Stillinger-Weber potential 

The sw potential has been used in a large number of simulations including a study of the 
adatom vibrations on the Si(lll)-7 X 7 surface [67, 681 and the melting [69, 701 and 
equilibrium structure [ 16,70,71] of the Si( 100) surface. An evaluation of the swpotential 
has already been given by Dodson [39] who carried out an MC simulation of epitaxial 
growth of Si( 111). It was found that while the potential worked well for modelling molten 
Si as well as the bulk properties of Si, modelling the epitaxial growth of Si(ll1) was 
impossible due to inadequate treatment of configurations with low coordination 
numbers. The addition of a fourth-order angular term to the sw potential did not alter 
the situation. In contrast, molecular-dynamics simulations of epitaxial growth of Si( 100) 
[72] and Si(l l1) [73] using the sw potential appear to have been more successful. The 
situation regarding the performance of the sw potential is thus unclear. 

Using the results of the TBB model as benchmark calculations, it is the purpose of 
this section to examine how well the sw potential is able to predict the energy minimized 
atomic configurations of the four silicon surfaces discussed in section 4.1. 

As can be deduced from the form of the sw potential given in section 2.2, the 
equilibrium condition in diamond cubic silicon is determined only by the pair potential 
term, because the three-body term is zero when the bond angles all take their ideal 
tetrahedral values. Since it is only a first-neighbour pair potential, this means that 
the minimum in the potential occurs at the perfect crystal first neighbour distance. 
Consequently, all bulk terminated surfaces undergo no relaxation whatsoever in the 
absence of fluctuations. 

Our results show that the buckling predicted by the TBB model, a quantum mechanical 
phenomenon, cannot be modelled by the classical sw potential which is based solely 
on geometrical optimisation of bond lengths and angles. The MC simulation strongly 
suggests, in the case of the Si(ll1) surface, that the ideal surface is the global minimum 
according to the sw potential (table 11). It is encouraging, however, to note from the MC 
simulation of the Si( 100) surface that defects are incorporated during dimerization since 
experiment indicates that such defects may well be important in stabilizing this surface. 

It is clear that minimization of strain energy for a given number of dangling bonds is 
the only driving force for lowering the surface energy using this potential. In this context, 
strain energy is defined as the distortion of, firstly, bond lengths from the ideal value of 

LP and secondly, bond angles away from the ideal tetrahedral value of cos-l(-d). 
We have shown that if the reconstruction does not involve a change in the number of 
bonded neighbours then the sw potential will predict the ideal surface to be the global 
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minimum. The sw potential cannot reproduce the type of tilting predicted by the TBB 
model because of the lack of electronic information. 

5. Conclusion 

By making detailed comparisons with a large number of other experimental and theor- 
etical results we have demonstrated that the TBB model is successfully able to describe 
the surface structure of a number of silicon surfaces. By examining the various con- 
tributions to the surface energy we have been able to provide a clear chemical picture 
of what drives certain surface reconstructions. This investigation has highlighted the 
importance of electronic effects, and in particular the promotion energy, in controlling 
detailsof the reconstruction such as buckling of the surface atoms. We therefore stress the 
importance of a quantum mechanical description of interatomic forces for unsaturated 
bonding environments. 

We have provided a detailed discussion of why the assumption of each atom remain- 
ing charge neutral, which is a critical assumption in determining an expression for 
interatomic forces within the framework of the TBB model, in practice makes very little 
difference to the predicted lowest energy atomic configuration of a surface of silicon. 
This is significant because it means that in order to obtain a particular atomic structure 
of a surface of silicon it is not necessary to include charge transfer between atoms on the 
surface. This conclusion should hold for any material with a total band width comparable 
to that of silicon (e.g. GaAs). 

In our study of the classical potential of Stillinger and Weber we have shown that it 
does not perform well in predicting stable atomic structures of surfaces due to the lack 
of electronic information. The results of this and other studies [8] strongly suggest that 
there is a limit to the empirical parameterisation of configuration space: it is unreasonable 
to expect a classical potential which has been empirically fitted in one region of con- 
figuration space necessarily to perform well in another. One must not, however, lose 
sight of the aim of classical potentials in terms of their computational efficiency. In order 
to describe a larger region of configuration space within a single empirical scheme a 
potential with a greater quantum mechanical basis is required. Thus, an empirical scheme 
is needed which is a well defined and improveable approximation to the Schrodinger 
equation. A bond order model recently proposed by Pettifor [18, 191 may go some way 
towards fulfilling this need. 
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Appendix. Bond forces for the Stillinger-Weber potential 

In this appendix we consider the force on an atom arising from the three-body component 
of the sw potential. It is computationally efficient to express the resultant force on an 
atom as a sum of ‘bond forces’ arising from each of its neighbours. By invoking Newton’s 
third law, each bond force contributes to the resultant force on each atom at either end 
of the bond. Thus, one bond force evaluation contributes to the total force acting on two 
atoms. This is standard procedure in central pairwise and N-body force models where 
the bond forces are parallel to the bonds. However, for non-central interactions the 
division of the resultant force on an atom into a sum of bond forces is more subtle and 
care has to be taken. We begin by revealing the dangers that exist in this kind of 
decomposition for the sw three-body potential. We go on to show how these difficulties 
may be surmounted to arrive at a form for the bond force that obeys Newton’s third law. 

Consider the three-body component E3 of the sw potential: 

where u3(i, j ,  k) is the three-body potential involving atoms i, j and k, given in equations 
(9 ) ,  (11) and (12). u3(i, j ,  k) is symmetrical with respect to interchanging any of i, j and 
k and it is translationally invariant, The force in the x direction acting on atom p that 
arises from all the three-body interactions is -dE3/dxp where xp is the x coordinate of 
atom p. This may be expressed as 

where the sums are taken over j and k only. 

n. That is, we can re-express (A2) as follows: 
We can express the resultant force as a sum of contributions arising from neighbours 

where, for n < p, 

(5) = ( E  + + z ) a ” ’ ( p , n , k )  
a x p  dueton k > p  n < k < p  k < n  

while, for n > p, 

(5) = ( E  + + x ) l f i 3 ( p , n , k ) .  
d x p  dueton k z n  p < k < n  k < p  

Care has to be taken with the physical meaning of -(dE3/dXp)dueto, , .  It is tempting to 



10286 J H Wilson et a1 

think of it as the bond force on atom p arising from atom n. However, this interpretation 
is not consistent with Newton's third law because 

Indeed, it may be shown, using the translational invariance of the three-body potential 
u 3 ,  that for n < p 

(3) +is) = - ( E  k > p  + n < k < p  + k < n  Z ) a " i ( p , n , k )  axk 
ax, due ton  due top  

and a similar expression may be obtained for n > p. Since the sum in (A.7) is generally 
non-zero we conclude that - ( d E 3 / a x p ) d u e t o n  cannot be interpreted physically as the bond 
force acting on atom p due to atom n. 

We will now demonstrate how the bond force acting on atom p due to atom n may 
be derived. The crucial step is to separate the components of u3(i, j ,  k) that depend on 
the angles between the three bonds into products of functions that are directed along 
the bonds. Following Biswas and Hamann [lo], this is achieved by using the addition 
formula of spherical harmonics. 

Using (Al), (9) and (11) the three-body energy E3 may be expressed as follows: 

where r' = r/o and h is given by (12). The parts of h that depend only on the bond lengths 
are already separated: 

h ( r i ~ >  r i k ,  O i ~ k )  = 6 ( r ; i > 6 ( r ; k ) d C o S  e i ~ k )  (A91 

where g ( r )  = {A exp[y(r - a) - ' ] } ' /2  and g(cos 0) = (4 + cos 0)2. Using the addition for- 
mula of spherical harmonics we may write 

I 
m=--1 

where c,, = 4/9 and c1 = c2  = 3.  ell and qll are the spherical polar coordinates directed 
along the bond vector r, - r j .  The three-body energy may now be reexpressed as follows: 

where 
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Then -&&/axp may again be expressed in the form of (A3) where the new form of 
(d&/&tp)dueton is as follows: 

It may be verified that 

dueton = - ($1 duetop' 

and thus (A14) does indeed represent the bond force on atom p due to atom n. 
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